Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 2): 118908, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38614197

RESUMEN

Pharmaceuticals and Personal Care Products (PPCPs) are inadvertently released into the aquatic environment, causing detrimental effects on aquatic ecosystem. There is an urgent need of an in-deep investigation on contamination information of PPCPs in aquatic environment as well as the ecological risks to the aquatic ecosystem. This study was carried out in Lipu River basin, China, to investigate the distribution pattern and ecological risks of PPCPs. Results showed that PPCPs pollution is ubiquitous, 29 out of 30 targeted PPCPs were detected in Lipu River. Fourteen PPCPs were detected with a frequency of 100% in all water samples, and ten PPCPs were detected with a frequency of more than 80%. The cumulated PPCPs concentrations ranged from 33.30 ng/L to 99.60 ng/L, with a median value of 47.20 ng/L in Lipu River. Caffeine, flumequine, nifedipine, and lomefloxacin were the predominant PPCPs in study area. Caffeine showed high ecological risk, five and seven individual PPCP showed medium and low ecological risk to algae.

2.
Sci Rep ; 13(1): 12242, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507437

RESUMEN

Understanding the distribution of soil organic carbon and nitrogen (OC(N)) content, cation exchange capacity (CEC), and specific surface area (SSA) in different soil particle sizes is crucial for studying soil fertility and properties. In this study, we investigated the distribution characteristics of the OC(N), CECand SSA in different particles of yellow-brown soil under different methods. The result revealed that as the particle size decreased, the soil OC(N), SSA and CEC content gradually increase. The content of OC and ON different soil particles ranged from 1.50-28.16 g·kg-1 to 0.18-3.78 g·kg-1, respectively, and exhibited significant differences between different particles. We observed good linear relationships between OC and ON in different particle sizes of yellow-brown soil under different utilization methods, with correlation coefficients ranging from 0.86 to 0.98, reaching a very significant level (n = 12, p < 0.01). The ranges of SSA and CEC in different particles of the four soils were 0.30-94.70 m2·g-1 and 0.70-62.91 cmol·kg-1, respectively. Additionally, we found logarithmic relationships between SSA (CEC) and the equivalent diameter for the four soils, with correlation coefficients (r2) higher than 0.91. Furthermore, there was an extremely significant linear relationship between CEC and SSA of the four soils, with correlation coefficients (r2) of 0.92-0.97 (n = 12, p < 0.01). These results highlight the close relationship between soil particle size and soil OC(N), SSA, and CEC. The conclusions drawn from this study provide valuable data support and a theoretical basis for further understanding soil properties.

3.
J Mol Cell Cardiol ; 158: 128-139, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34043986

RESUMEN

Myocardial infarction (MI)-induced the activation of NLRP3 inflammasome has been well known to aggravate myocardial injury and cardiac dysfunction by causing inflammation and pyroptosis in the heart. Circular RNAs (circRNAs) have been demonstrated to play critical roles in cardiovascular diseases. However, the functions and mechanisms of circRNAs in modulating cardiac inflammatory response and cardiomyocyte pyroptosis remain largely unknown. We revealed that circHelz, a novel circRNA transcribed from the helicase with zinc finger (Helz) gene, was significantly upregulated in both the ischemic myocardium of MI mouse and neonatal mouse ventricular cardiomyocytes (NMVCs) exposed to hypoxia. Overexpression of circHelz caused cardiomyocyte injury in NMVCs by activating the NLRP3 inflammasome and inducing pyroptosis, while circHelz silencing reduced these effects induced by hypoxia. Furthermore, knockdown of circHelz remarkably attenuated NLRP3 expression, decreased myocardial infarct size, pyroptosis, inflammation, and increased cardiac function in vivo after MI. Overexpression of miR-133a-3p in cardiomyocytes greatly prevented pyroptosis in the presence of hypoxia or circHelz by targeting NLRP3 in NMVCs. Mechanistically, circHelz functioned as an endogenous sponge for miR-133a-3p via suppressing its activity. Overall, our results demonstrate that circHelz causes myocardial injury by triggering the NLRP3 inflammasome-mediated pro-inflammatory response and subsequent pyroptosis in cardiomyocytes by inhibiting miR-133a-3p function. Therefore, interfering with circHelz/miR-133a-3p/NLRP3 axis might be a promising therapeutic approach for ischemic cardiac diseases.


Asunto(s)
Silenciador del Gen , Inflamasomas/metabolismo , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Helicasas/genética , ARN Circular/metabolismo , Transducción de Señal/genética , Animales , Animales Recién Nacidos , Hipoxia de la Célula , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Infarto del Miocardio/genética , Miocitos Cardíacos/metabolismo , Piroptosis/genética , ARN Circular/genética , Transfección , Regulación hacia Arriba
4.
Front Cell Dev Biol ; 9: 762853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004673

RESUMEN

N6-methyladenosine (m6A) methylation in RNA is a dynamic and reversible modification regulated by methyltransferases and demethylases, which has been reported to participate in many pathological processes of various diseases, including cardiac disorders. This study was designed to investigate an m6A writer Mettl14 on cardiac ischemia-reperfusion (I/R) injury and uncover the underlying mechanism. The m6A and Mettl14 protein levels were increased in I/R hearts and neonatal mouse cardiomyocytes upon oxidative stress. Mettl14 knockout (Mettl14+/-) mice showed pronounced increases in cardiac infarct size and LDH release and aggravation in cardiac dysfunction post-I/R. Conversely, adenovirus-mediated overexpression of Mettl14 markedly reduced infarct size and apoptosis and improved cardiac function during I/R injury. Silencing of Mettl14 alone significantly caused a decrease in cell viability and an increase in LDH release and further exacerbated these effects in the presence of H2O2, while overexpression of Mettl14 ameliorated cardiomyocyte injury in vitro. Mettl14 resulted in enhanced levels of Wnt1 m6A modification and Wnt1 protein but not its transcript level. Furthermore, Mettl14 overexpression blocked I/R-induced downregulation of Wnt1 and ß-catenin proteins, whereas Mettl14+/- hearts exhibited the opposite results. Knockdown of Wnt1 abrogated Mettl14-mediated upregulation of ß-catenin and protection against injury upon H2O2. Our study demonstrates that Mettl14 attenuates cardiac I/R injury by activating Wnt/ß-catenin in an m6A-dependent manner, providing a novel therapeutic target for ischemic heart disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA